

iButton Identification.doc 2006-08-05 Page1 von 12

ARMexpress identifies iButtons®

Dr. Claus Kühnel

"Combining a 60 MHz ARM CPU with a BASIC compiler, our new ARMexpress DIP24
Module is super speedy and easy to program" - this statement from Coridium Corp., the
developer of ARMexpress, made me curious and I wanted to play with this new part.

At first sight there seems to be a contradiction between the used ARM7 microcontroller and
the DIP24 form factor of the module with its reduced number of I/O pins. The built-in support
for I2C, SPI, RS-232, and 1-Wire protocols is a good base for interfacing peripherals for
process control at low pin count too..

This article shows first results from connecting iButtons to ARMexpress for identification.

1. iButtons and 1-Wire devices
1-Wire devices lower system cost and simplify design with an interface protocol that supplies
control, signaling, and power over a single-wire connection (and GND). A variety of
identification, sensor, control, and memory functions are available in traditional IC packages,
ultra-small CSPs, and stainless-steel-clad iButtons.
1-Wire device is a general term and includes iButtons implicit. I use the term iButton always
when the iButton is used explicit.

1.1. Some Basics
The 1-Wire Interface connects several 1-Wire Devices to a simple network (MicroLAN).

The interface is built by a drilled two-wire connection (DATA and GND). The pullup resistor is
required absolutely. It guarantees the Hi level. A bus master is responsible for controlling the
serial bit stream. Figure 1 shows the drivers of bus master and slave in a 1-Wire network.

Figure 1 Bus Master and Slave in a 1-Wire network

iButton Identification.doc 2006-08-05 Page2 von 12

For an interface built by such simple hardware the software protocoll must secure the
communication.
Due to the reduced current consumption of CMOS technology it is possible to power the
1-Wire device in short communication breaks by the Hi level. This in the 1-Wire device saved
energy is enough for the running data exchange until the next charge.

The serial data exchange is half-duplex at discrete time slots.

In each case the bus master, it is here the ARMexpress, starts the communication by
sending a command to the connected 1-Wire device(s). Commands and data will be sent bit
by bit starting with the LSB.
A sharp rise on the data line by the master synchronizes master and slave(s). A certain time
after this rise (standard is 30 µs) the data line is polled depending of the transmission
direction from master or slave to read a bit information (sample time).

This mode is known as data transmission in time slots. Each time slot is synchronized by a
sharp H/L edge of the master. Therefore, pauses in the bit stream do not generates errors or
other problems.

A data exchange can start first after connceting a 1-Wire device. The 1-Wire devices are not
always soldered. We come back to this point very soon.
Several microseconds after the connection the 1-Wire device pulls the data line to GND to
show the bus master the connection and the waiting for a command. This presence pulse
can be requested by the master by sending a reset pulse.

Figure 2 explains the timing briefly. The ARMexpress hides the details for the programmer.
So it is very easy to use the 1-Wire interface in an application.

Figure 2 Timing Read/Write Operation

Figure 2 shows the actvities of the master with a streight, thick line. Each write or read
operation begins with a falling edge of the master followed by a Lo pulse of about 15 µs.

For writing a „0“ the master hold the data line to GND. For writing a „1“ the master will be
passiv and the pullup resistor pulls the data line to Hi.

Reading is quite similar. If the slave sends a „0“ to the master then the slave holds the data
line to GND. This phase is marked by a dotted, thick line. If the master should read a „1“ then
the slave is passiv and the pullup resistor generates the Hi level.

iButton Identification.doc 2006-08-05 Page3 von 12

1.2. 1-Wire Devices
After explaining the basics of the data exchange between the bus master and the slave we
want to known somethings about the 1-Wire devices itself.

Dallas MAXIM offers the iButtons and 1-Wire Chips, all equipped with the 1-Wire interface.

The iButtons are devices in stainless steel package called MicroCan. These iButtons look
more like a big pill as an integrated circuit. Figure 3 shows such an iButton.

Figure 3 iButton

The MicroCan protects the iButtons as a typical devices used for automatisation purposes
against external influences and is used as electrical contact at the same time. Besides
numerous possibilities for contacting there is an iButton Mounting Clip for printed circuit
boards (Figure 4).

Figure 4 iButton Mounting Clip

The most chips used in iButtons are available as convential integrated circuit in a plastic
package.

Each 1-Wire device has an unique 6-byte identification nummer (serial number) saved in a
laser-programmed ROM area. The family code is an indication for the device type. The family
code and the serial number describe each 1-Wire device unequivocal and identificable.

The ROM area has the same format in all 1-Wire devices. Byte 0 contains the family code
describing the device type. The bytes 1 to 6 contain the unique serial number. Byte 7
contains a CRC-8 check sum usable for testing the correctness of the data transmission.

B7 B6 B5 B4 B3 B2 B1 B0

CRC-8 Serial Number Family Code

Figure 5 shows an overview of the types of 1-Wire devices [1].

iButton Identification.doc 2006-08-05 Page4 von 12

Figure 5 List of 1-Wire devices

iButton Identification.doc 2006-08-05 Page5 von 12

1.3. Access to 1-Wire devices
The access to all 1-Wire devices is organized similar to the ISO/OSI-Model. But, not all
layers of this modell are implemented. Table 1 shows the existing layers for 1-Wire devices.

ISO/OSI-Modell 1-Wire device

Application Layer No
Presentation Layer Yes

Session Layer No
Transportation Layer Yes

Network Layer Yes
Link Layer Yes

Physical Layer Yes

Table 1 ISO/OSI-Model

The Physical Layer defines the electrical conditions, logic levels, and the timing for all 1-Wire
devices.
The basic functions of the 1-Wire communication, as Reset, Presence Detection and Bit
transfer, are defined in the Link Layer.

In the Network Layer the identification of the 1-Wire devices using the serial number is
carried out. The commands of this layer point to ROM exclusively and are named as ROM
Commands therefore (Table 2).

Table 2 ROM Commands

The Transport Layer is responsible for the data exchange out of the ROM area. The next
table shows a selection of the available Memory Commands (Table 3).

Table 3 Memory Commands

ROM COMMANDS FUNCTION

Read ROM Reads the complete ROM content (only possible when iButton onnected)
Match ROM Addresses an iButton according to the 64-Bit ROM content
Skip ROM Skip addressing (only possible with a connected iButton)

Search ROM Search for an iButton in a network
Alarm Search Search for iButtons (DS1920) in a network, which notify an alarm

MEMORY COMMANDS FUNCTION

Convert Temperature Starts the temperature measurement
Read Scratch Pad Reads all bytes from Scratch Pad Memory
Write Scratch Pad Saves the temperature levels into the Scratch Pad Memory
Copy Scratch Pad Copies the temperature levels into the EEPROM
Recall EE Copies the temperature levels back to Scratch Pad Memory
Read Power Supply Queries the power supply

iButton Identification.doc 2006-08-05 Page6 von 12

Only for completeness, here is a hint to the file interface in the Presentation Layer. The
iButton operating system uses this file interface. But, for our work with ARMexpress it is not
relevant.

The next application sample demonstrates how to organize the access to iButtons.

2. Identification of iButtons
Each iButton can be identified according to its ROM data. Before reading the ROM content
the iButtons must be connected reliable to the ARMexpress.
The program sample queries periodically the 1-Wire interface for an iButton connected.
Figure 6 shows the output of the program in execution. The source code of the program
1WIRE_ID.BAS is placed on the end of this article.

Figure 6 Messages of program 1-WIRE_ID.BAS

If an iButton was found then the program reads its ROM content and sends a hex dump to
the terminal. Afterwards a CRC check calculates the CRC-8 over all read bytes except for
the CRC byte and sends it to the terminal too. The data exchange was faultless if calculated
and read CRCs are equal. A further message displays the result. The last activity is the
interpretation of the family code and sending a message describing the detected type of
iButton.

Was no iButton detected the message „No iButton found.“ is sent to the terminal.

iButton Identification.doc 2006-08-05 Page7 von 12

In Figure 6 an area is marked. Here you can see at first an iButton with family code 0x10
found. The calculated CRC-8 was 0xF0 and signalized a correct data exchange, marked by
"CRC OK." additionally. The interpretation of the family code 0x10 delivered a temperature
sensor as type of the connected iButton.

Afterwards this iButton was removed and replaced by another. Before the replacement was
finished the program detected the missing iButton and sended the message "No iButton
found." to the terminal.

After the replacement the program detected an iButton with family code 0x06. The calculated
CRC-8 was 0x28 and signalized a correct data exchange, marked by "CRC OK." again. The
interpretation of the family code 0x06 delivered a 4 KB NV RAM as type of the connected
iButton.

3. Program Development
Now you cold see the operation of the program sample for iButton identification. Coridium
has TclTerm as communication and download tool in the package ready for download from
the Coridium homepage.
You as programmer can select your preferred editor. It is a matter of taste, but I will show
you the Crimson Editor as possibility for editing your source code. The Crimson Editor offers
syntax-highlighting etc. and is free.

In the link directory of the ARMexpress User Group I placed a link for download of the
Crimson Editor. Furthermore, I placed the required files for syntax-highlighting of
ARMexpress Basic in the file directory.

If you like the format of the source code in the next chapter then you can use the template
placed in the file directory of the ARMexpress User Group too.

To get a first impression of working with the Crimson Editor Figure 7 shows a part of the
source code in the edit window.

iButton Identification.doc 2006-08-05 Page8 von 12

Figure 7 Source Code im Crimson Editor

iButton Identification.doc 2006-08-05 Page9 von 12

4. Source code

' -----[Title]--
'
' File...... 1wire_id.bas
' Purpose... Reading Family Code and Serial Number of iButton
' Author.... Claus Kuhnel
' Started... 1997-12-29 for BS2p
' Updated... 2006-08-06 for ARMexpress
'
' -----[Program Description]--
'
' iButtons and 1-Wire devices can be identified according to it's ROM
' data. Before reading the ROM content the iButton must be connected.
' iButtons are hot-pluggable. 1-Wire devices will be soldered and
' connected permanently therefore.
' This program periodically queries the 1-Wire interface for an iButton
' connected to one I/O pin and displays its ROM data.
'
' -----[Revision History]---
'
' -----[Constants]--
'
CONST OWpin = 15 ' 1-wire device pin
CONST ReadROM = $33 ' Read ROM Command
CONST SearchROM = $F0 ' Search ROM Comand
CONST NoDevice = $03 ' No device present

' -----[Variables]--
'
DIM ROMData (8)
DIM CRC8(256)

dim value$ (10)
dim number$ (10)

pos = 2 ' number specifies positions for output,
 ' 2 means printout of 0x00 to 0xFF

' -----[Initialization]---
'
restore

for i = 0 to 255 ' load data into array
 read crc8(i)
next i

' -----[Main Code]--
'
do
 gosub blink ' marks the query by flashing a LED
 present=0
 devcheck = 0
 owout OWpin, present, [SearchROM] ' looks for iButton connected
 if (present=1) then
 print "iButton found"
 gosub displayROM
 gosub displayFamily
 else
 print "No iButton found"
 endif
 print

iButton Identification.doc 2006-08-05 Page10 von 12

 wait(1000)
loop

' -----[Subroutines]--
'
displayROM:
 print "Dallas 1-Wire ID: ";
 owin OWpin, ReadROM, [ROMData\8]

 for idx = 0 to 7
 value = ROMData(idx)
 gosub hexform
 print value$; " ";
 next idx

 CRCvalue = 0
 for idx = 0 to 6
 value = ROMData(idx)
 CRCvalue = CRC8(CRCvalue XOR value)
 next idx
 value = CRCvalue
 gosub hexform
 print
 print "CRC = ", value$

 if CRCvalue = ROMData(7) then
 print "CRC OK."
 else
 print "CRC wrong."
 endif
 pause(1000)
 return

displayFamily:
 print "Detected device is ";
 select case ROMData(0)
 case $01
 print "Serialnumber (only)"
 case $06
 print "4kb NV RAM memory"
 case $10
 print "Temperature sensor with alarm trips"
 case $14
 print "256-bit EEPROM memory and 64-bit OTP register"
 case $24
 print "Real-time clock (RTC)"
 case else
 print "Device with Family Code "; hex(ROMData(0))
 endselect
 return

hexform:
 number$ = HEX(value)
 value$ = "0000" + number$
 value$ = RIGHT(value$,pos)
 value$ = "0x"+value$
 return

blink:
 IO(8)=0
 wait(20)
 IO(8)=1
 return

iButton Identification.doc 2006-08-05 Page11 von 12

' -----[Data]---
'
' Table lookup method for generating a CRC-8 value on a byte-by-byte
' basis. At the start of each start of each message or datalogging, the
' CRC value must be set to zero.
' After each byte is received or written, the data value and the current
' CRC value is passed to the Crc8 subroutine for processing.
' The Crc8 will return the calculated CRC-8 value to that point.
' The CRC value returned after the last byte is processed is the final
' CRC-8 value.

CRC8_table:
DATA 0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65
DATA 157, 195, 33, 127, 252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220
DATA 35, 125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3, 128, 222, 60, 98
DATA 190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158, 29, 67, 161, 255
DATA 70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7
DATA 219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154
DATA 101, 59, 217, 135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36
DATA 248, 166, 68, 26, 153, 199, 37, 123, 58, 100, 134, 216, 91, 5, 231, 185
DATA 140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242, 172, 47, 113, 147, 205
DATA 17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236, 14, 80
DATA 175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238
DATA 50, 108, 142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115
DATA 202, 148, 118, 40, 171, 245, 23, 73, 8, 86, 180, 234, 105, 55, 213, 139
DATA 87, 9, 235, 181, 54, 104, 138, 212, 149, 203, 41, 119, 244, 170, 72, 22
DATA 233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20, 246, 168
DATA 116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53

Listing 1-Wire Identification (1WIRE_ID.BAS)

The source code listed here can be downloaded from ARMexpress User Group or author's
homepage.

iButton Identification.doc 2006-08-05 Page12 von 12

5. Links

Coridium Homepage http://www.coridiumcorp.com

ARMexpress User Group http://groups.yahoo.com/group/ARMexpress

Author's Homepage http://www.ckuehnel.ch

6. Literature
[1] DALLAS MAXIM APPLICATION NOTE 155

1-Wire Software Resource Guide Device Description

2005-10-11

[2] Kühnel, C.; Zahnert, K.:

BASIC Stamp 2p
Commands, Features and Projects

Parallax: Rocklin (CA), 2003

ISBN 1-928982-19-0

[3] Kühnel, C.; Zahnert, K.:

BASIC Stamp 2nd Ed.

Newnes: Boston et al, 2000
ISBN 0-7506-7245-5

